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1 Introduction

Bounding arguments are an extremely useful tool in number theory and algebra, as it can signif-
icantly reduce the number of potential solutions to a particular problem. There is a wide variety
of types of bounding arguments which we will explore in these lecture notes.

2 Dominating Terms

For large values of n and some constant c, notice that n! > cn > nc > n. If we see expressions like
this, we can deduce that once the variables are sufficiently large, one side of an equation will be
greater than the other side, so there will be no solutions. However, you will need to prove each
step rigorously.

Example 2.1 Find all positive integers n such that 2n = n2

Solution: For a question like this, where we are given an equation, it is usually a wise idea to try
substituting a few numbers and seeing the behaviour of both sides! Indeed, the first few values of
n give us:

n 2n n2

1 2 1
2 4 4
3 8 9
4 16 16
5 32 25
6 64 36

Excellent, this already gives us two values for n where 2n = n2, so we know that n = 2 and 4 are
solutions! You will also notice that from here on, 2n grows much more quickly than n2, so you
might want to prove that 2n > n2 for n ≥ 5 to show that there are no more solutions. Indeed, we
can prove this by induction.

Lemma: 2n > n2 for n ≥ 5

In the base case, when n = 5 we have that 2n = 32 and n2 = 25 so that 2n > n2.
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Now suppose that for some integer k, 2k > k2. It suffices to show that 2k+1 > (k + 1)2.

We have that

2k+1 = 2 · 2k

> 2 · k2 (inductive assumption)

= k2 + k2

> k2 + 2k + 1 (as k > 5)

= (k + 1)2

This concludes the induction, so there are no solutions to 2n > n2 for n ≥ 5. This means that the
only solutions to 2n = n2 are n = 2, 4. �

Exercise 2.2 Find all positive integers n such that 2n = n! + n

3 Factorisation and Divisibility

An important property of the integers (which makes number theory so distinguishable from algebra)
is divisibility. The Fundamental Theorem of Arithmetic tells us that each positive integer can be
factorised uniquely into primes, and so if we can factorise sides of an equation, we can greatly reduce
the possible solutions to an equation. However, you may need to do some algebraic manipulation
before you can factorise one side of an equation.

Example 3.1 Find all integers m and n such that mn = m + n

Solution: to aim for a factorisation, we can notice that the terms looks similar to (m−1)(n−1) =
mn−m− n + 1. So lets try move things around and factorise!

mn = m + n

mn−m− n = 0

mn−m− n + 1 = 1

(m− 1)(n− 1) = 1

Since m − 1 and n − 1 are integers that multiply to 1, they must both be -1 or 1! This gives us
the only solutions (m,n) = (0, 0) or (2, 2). �

Exercise 3.2 Find all integers m and n such that
1

m
+

1

n
=

1

10
.

Factorisation and divisibility ties in quite nicely with the next section!
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4 WLOG - Without Loss Of Generality

4.1 Symmetric Expressions

An expression is defined as symmetric if you can swap any two variables and the expression
remains the same. For example if we swap x and y around in x2 + xy + y2, we obtain y2 + yx+ x2

which is the same expression, so we may call it symmetric.

In a symmetric equation, we may assume that the variables follow an increasing or decreasing
sequence (since we can just swap any pair of variables to arrange them in this way). ie. in the
previous example, any possible values of x and y would have to satisfy x ≥ y or y ≥ x. But we
deduced that we could swap x and y around and the expression would remain the same. Hence,
we may assume that x ≥ y and that if we have any pairs of values (x, y) = (a, b) then by swapping
the values (x, y) = (b, a), we can accommodate for the case when y ≥ x.

Hence, make sure you remember to account for permutations of solutions if you WLOG some-
thing during your proof.

4.2 Cyclic Expressions

Consider the following case: if we swap a and b around in the expression a2b+ b2c+ c2a, we obtain
b2a + a2c + c2b which is different, so this expression is not symmetric. However, if we cycle the
variables a → b, b → c, c → a then we obtain b2c + c2a + a2b which is indeed the same as the
original expression. We call such an expression cyclic, and notice how all symmetric expressions
are cyclic but not all cyclic expressions are symmetric.

In a cyclic equation, we may assume that one of the variables is the smallest or largest (since
we can cycle through the variables, until the our desired variable is the largest or smallest). For
example, in the above example, we may assume that a ≤ b and a ≤ c, but notice that we cannot
assume that a ≤ b ≤ c.

Also, remember to account for cycles of your solutions if you WLOG this during your proof.

Example 4.1 How many triples of integers (a, b, c) are there such that

abc + ab + bc + ca + a + b + c = 104.

Solution: A starting point here would probably be to add 1 to both sides of the equation so it
can be factorised!

abc + ab + bc + ca + a + b + c = 104

abc + ab + bc + ca + a + b + c + 1 = 105

(a + 1)(b + 1)(c + 1) = 105

Note that since a, b, c can be any integer and 105 = 3 · 5 · 105, we have a lot of cases to consider!
However, the equation is symmetric in a, b, c so we can WLOG assume that a ≤ b ≤ c, and consider
unique factorisations of 105. This gives us the possible factorisations and the corresponding number
of arrangements (n) accounting for symmetry:
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a + 1 b + 1 c + 1 n
3 5 7 6
1 7 15 6
1 5 21 6
1 3 35 6
1 1 105 3
-7 -5 -3 6
-15 -7 -1 6
-21 -5 -1 6
-35 -3 -1 6
-105 -1 -1 3

In total, we can see that there are 54 triples of integers (a, b, c) that satisfy the given equaiton. �

Exercise 4.2 Find all positive integers a, b, c such that abc = ab + bc + ca.

5 Modular Arithmetic

Modular Arithmetic is a powerful tool in restricting the possible solutions to an equation because
if an equation is to be true, it must also be true when the equation is taken to any modulus. This
is particularly useful if we consider quadratic residues (in mod 4 or prime mods), cubic residues
(in mod 7) and so on. Furthermore, it can be useful if we see factorials as they have many factors
and so when they are sufficiently large, they will be congruent to 0 in any mod. Note that it often
takes some trial and error to find which modulus to use.

Example 5.1 Find all positive integers m and n such that m2 = n! + 5

Solution: Again, it might be a wise starting point to test some values to see if we can see any
solutions and observe patterns. We’ll test different values for n, and try to see if they are a square
number (which means there is a solution for m)!

n n! + 5 square
1 6 no
2 9 yes
3 11 no
4 29 no
5 125 no
6 725 no

We have found one solution! And you may think that there might not be any more solutions... To
do this, we can consider both sides in mod 7 for n ≥ 7.

Note that if n ≥ 7, we have that 7|n! so

n! + 5 ≡ 5 (mod 7).

But considering quadratic residues in mod 7, we have:
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m m2 (mod 7)
0 0
1 1
2 4
3 2
4 2
5 4
6 1

This means that for all integers m, we have

m2 ≡ 0, 1, 2, 4 (mod 7).

Since the left and right sides of the equation leave a different remainder when divided by 7, they
cannot be equal for n ≥ 7. Hence, the only solution is (m,n) = (3, 2). �

Remark: Notice that we are actually using the contrapositive here! We are using the fact that:

an integer solution to the equation exists =⇒ an integer solution exists in mod 7

is equivalent to

an integer solution does not exist in mod 7 =⇒ no integer solution to the equation exists

Exercise 5.2 Find all integers a and b such that a2 = b5 + 7

6 The Discrete Inequality and Bunching

Another important property of the integers is that of discreteness, so this means that between two
consecutive integers, there are no other integers. This leads to the discrete inequality which
states that if m and n are integers such that m > n, then m ≥ n + 1.

As obvious as this may be, it has some very powerful implications. For example, between any
two consecutive squares, there are no other square numbers, and similarly for cubes and so on.
Furthermore, if a and b are positive integers such that a|b, then we can deduce that b ≥ a, but if
we know that b > a, the discrete inequality tells us that b ≥ 2a.

Example 6.1 Find all positive integers n such that n2 + n + 1 is a perfect square.

Solution: To solve this question, you might notice that the expression n2 + n + 1 looks a little
bit similar to n2 + 2n + 1 = (n + 1)2 which is a perfect square! In fact, you know that it will
be strictly less than (n + 1)2. But also notice that since n is a positive integer, n2 + n + 1 > n2,
another perfect square! Combining this, we can write:

n2 < n2 + n + 1 < n2 + 2n + 1 = (n + 1)2.

This means that n2 +n+ 1 is always between two consecutive squares, so it can never be a square
itself! This means that there are no positive integers n such that n2 + n+ 1 is a perfect square. �

Exercise 6.2 Find all integers a and b such that a2 + 4b and b2 + 4a are both squares.
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7 The Quadratic Discriminant

Another technique which can be used is with quadratic discriminants if we have a diophantine
equation which is quadratic in one of the variables. From the quadratic formula, we then know
that the discrimant must be a perfect square which can give us a simpler equation to deal with to
look for solutions.

Example 7.1 Find all integers m and n such that

m2 + 2mn− n = 1

Solution: This equation can seem quite scary at first and you should probably try to throw some
of the earlier tricks at it. But one way to approach it is to rearrange it into a quadratic in m:

m2 + 2mn− n− 1 = 0.

Now, if we look at the discriminant of this quadratic, we have

∆ = (2n)2 − 4(1)(−n− 1)

∆ = 4n2 + 4n + 4

∆ = 4(n2 + n + 1)

In order for there to be an integer solution, we must have that ∆ is a perfect square, and so
n2 + n + 1 must be a perfect square. But we have shown in example 6.1 that n2 + n + 1 is not a
square for any positive n.

However, n2 + n + 1 is a square for n = 0,−1, but for n < −1, we have that

(n + 1)2 = n2 + 2n + 1 < n2 + n + 1 < n2.

So that the only solutions can occur when n = 0, 1. Substituting in n = 0 gives the solutions
m = 1,−1 and substituting in n = −1 gives the solutions m = 0, 2. Hence, all the solutions are
(m,n) = (−1, 0), (0,−1), (1, 0), (2,−1). �

Exercise 7.2 Find all integers a and b such that

2a4 − ab + b2 + 2 = 0.
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